CS1112 Fall 2022 Project 4 (Optional problem. This will not be graded.)

If you would like extra practice with images, complete the problem below. You will not submit your work
on this problem as it is an optional problem, but it will be good practice for prelim 2.

4 Encryption and Decryption

People can send coded messages such that only the intended recipients who possess the "key” to unlock the
message can understand it. A message can be words, numbers, an image, sounds, ..., etc., and a key can be
as simple as a number, more complex such as an image, or a combination of different keys. For example, the
Cesar Cipher is an encryption scheme where each letter in an alphabet is encoded as a letter further down
the alpabet. The key is then simply the integer value of the shift. With the key 3, the message “I like fish”
would be encrypted as “L olnh ilvk”. Someone receiving the message “L olnh ilvk” can understand it easily
if they knew that the key was 3, i.e., the message can be decrypted using the key 3 to become “I like fish”.

In this problem, you will encrypt and decrypt a digital image using another image as the key. You will use
the RGB values of the key and add them to the RGB values of the original image in order to do encryption.
Analogously, you will subtract the RGB values of the key from an encrypted image in order to decrpyt it.
The arithmetic operations are carried out on the image pixel by pixel. This problem requires that you deal
with the limits of the type uint8.

Download p4files.zip and extract the files into your current working directory in MATLAB. Included in
the zip are two png! image files, one that is a coded image (secretPhoto.png) and the other is the key
image (key.png) that was used to make the coded image. Later on, feel free to use your own images for
testing! There are other files in the folder, which will be used for another problem later.

4.1 Decrypt
Implement function decrypt as specified:

function de = decrypt(A, key)

Decrypt an encrypted image using a key image

A: RGB data of an image, a 3-d uint8 array. The image was encrypted
using the key image.

key: RGB data of the key image used to encrypt A. key is a 3-d uint8 array.

de: RGB data of A decrypted using the key image. de is a 3-d uint8 array
the same size as A.

To decrypt A, subtract the RGB values of key from the RGB values of A
pixel by pixel. A and key may not have the same number of rows and

% columns. Suppose A has m rows and n columns and is smaller than or equal
% in size to key, then subtract the RGB values of the first m row and first
% n columns of key from the RGB values at the corresponding pixels of A.

% If A is bigger than key, then tile the key to decrypt A. Any underflow
% due to uint8 subtraction should wrap around, e.g., uint8(0)-uint8(3)

% should result in the decrypted value of uint8(253).

The parameters are the uint8 arrays storing the RGB data the image and the key, not the png
image file names. To get the data into the Workspace for later calling your function, use imread in the
Command Window, e.g.,

A= imread(’secretPhoto.png’); ’% data of encrypted image
key= imread(’key.png’); % data of key image
en= decrypt(A, key); % Call your function after you have completed it

The term “corresponding pixels” means that you line up the key and the image at the top left

corner; then pixel (i,j) of the image corresponds to pixel (i,j) of the key. If the key is smaller than the image,
then you need to make a key big enough so that every image pixel has a corresponding pixel in the key. Le.,

IThe code that you will write for encryption/decryption using png images is no different from that you would write had the
image been in the jpg format. The reason we use the png format here is to avoid data loss due to the compression to the jpg
format after encryption/decryption has been done.



you need to tile the given key so that there are at least as many rows and columns of pixels as the image.
The diagram below illustrates how a key (smiley face on pink) is tiled so that an image that is bigger (gray
area) can be covered. You can achieve tiling by actually creating a bigger array as the key. Alternatively,
you can use function rem to cycle through the row (column) indices of the key as you work through the row
(column) indices of the bigger image.

Key smaller than image Key tiled over image

The encrypted image that we provided is smaller than the key, so you can get started with decryption easily.
Later, after you have written the next function, encrypt, be sure to get an image larger than the key so
that you can test that your tiling works.

Wraparound. | Wraparound is one of several ways to deal with computation that results in values that

would be “out of bounds” for a particular type (set). You have seen that MATLAB uses a different strategy,
saturation, for the type uint8, i.e., it caps any overflow to 255 and any underflow to 0. However, saturation
is incompatible with our decryption (encryption) scheme since the results from subtraction (addition) would
not be unique, e.g., uint8(5)-uint8(6) and uint8(5)-uint8(9) in MATLAB both result in uint8(0). That
means that if your encryption results in satuation, then in decrpytion you would not be able to recover the
original value! Therefore, we will use a different strategy, wraparound, to deal with underflow and overflow.
With wraparound, treat all the values in a set as a cycle instead of a linear number line. Take the analog
time clock as an example, the set of values for hours is [1 2 ...12] and any addition or subtraction that
you do in regard to hours is done on a cycle, i.e., after 12h is 1h (not 13h). That’s wraparound—13h wraps
around to become 1lh. In the other direction, Oh wraps around to become 12h.

You need to write code for decryption (and later encryption) that achieves wraparound for the type uint8.
Le., after uint8(255) comes uint8(0), then, uint8(1), and so forth. For example, uint8(254)+uint8(3)
should give uint8(1). In the other direction, before uint8(0) is uint8(255), and before that is uint8(254),
and so forth. For example, uint8(1)-uint8(4) should result in uint8(253).

4.2 Encrypt

Implement function encrypt as specified:

function en = encrypt(A, key)

Encrypt an image using a key image

A: RGB data of an image, a 3-d uint8 array.

key: RGB data of the key image for encrypting A. key is a 3-d uint8 array.

en: RGB data of image A encrypted by key. en is a 3-d uint8 array the
same size as A

To encrypt A, add the RGB values of key to the RGB values of A pixel by
pixel. A and key may not have the same number of rows and columns.
Suppose A has m rows and n columns and is smaller than or equal in size
to key, then add the RGB values of the first m row and first n columns of
key to the RGB values at the corresponding pixels of A. If A is bigger
than key, then tile the key to encrypt A. Any overflow due to uint8
addition should wrap around, e.g., uint8(255)+uint8(3) should result in
the encrypted value of uint8(2).

ST ST S 52 52 52 52 52 52 5% 5% 5% s oo

Have fun encrypting and decrypting your own images!



